Schleichender Zerfall

Wir kennen es alle: er kann grün sein, rot oder manchmal auch nur schwer zu erkennen. Es geht um Korrosion. Wenn Kupfer korrodiert, sich also auflöst, wird es grün. Bei Eisen ist es „rostrot“ und Kunststoff kann aufquellen, auch Gewicht verlieren und einige andere Erscheinungen auftreten.Bei der Korrosion findet eine allmähliche Zerstörung eines Stoffes durch Einwirkung von Stoffen aus seiner Umgebung statt. Spezialisten nehmen solche Prozesse unter die Lupe und können Wege finden, um Materialversagen durch Korrosion zu verhindern – lange bevor sich Katastrophen ereignen.

Auflösungserscheinungen

Der Bauherr einer neuen Schweizer Industrieanlage für Hightech-Geräte stand vor einem Rätsel: Kilometerlange, nagelneu verlegte Druck- und Kühlleitungen aus nichtrostendem Stahl und Aluminium im Wert von mehreren hunderttausend Franken fingen noch während des Baus an zu korrodieren. Was hatte die Metalle so schnell angegriffen? Experten nahmen das ganze System unter die Lupe: Waren korrosive Baustoffe im Spiel, waren Reinigungsmittel schuld, oder waren schlicht die falschen Materialien ausgewählt worden? Schliesslich fanden sie den Schuldigen in Form einer kleinen Flasche auf einem Werkstattwagen: Der Montagetrupp hatte statt eines professionellen Dichtigkeitsprüfmittels ein Universalreinigungsmittel aus dem Supermarkt verwendet, um mit dem Schaum Undichtigkeiten zu lokalisieren. Doch das Mittel aus dem Supermarkt enthielt Säuren und Chloride, die die Metalle korrodieren ließen.

Das Licht geht aus

Dem Hausmeister einer Schule in der Ostschweiz fällt bei Reinigungsarbeiten in den Frühjahrsferien 2019 Korrosion an den Befestigungen der Deckenlampen in der Turnhalle auf. Die Schulverwaltung zieht den Architekten zu Rate, der den Bau seinerzeit beaufsichtigt hatte. Die Deckenverkleidung wird abgebaut. Ergebnis: Die gesamte Deckenkonstruktion weist massive sicherheitsrelevante Korrosionsschäden auf. Bei der Sanierung einige Jahre zuvor hatten die Arbeiter, aus Unkenntnis des Materials, Metallhaken durch Isolationsplatten aus Phenolharz-Schaum gebohrt. Kondenswasser liess die Isolation später feucht werden. Der Phenolharzschaum entwickelte daraufhin starke Säuren, die die Befestigungshaken praktisch durchrosten ließen. Die Decke wäre irgendwann herabgestürzt.

Korrosionsforschern

Sie sind so etwas wie die Pathologen der Bauwirtschaft, die Material-Leichen sezieren und immer von Neuem nach Tätern suchen. Doch das ist nicht alles, Korrosionsforscher sind viel mehr. Sie arbeiten an der Schnittstelle zwischen Materialwissenschaft und Konstruktion einerseits, Chemie und Physik andererseits. Mit einem Bein sind sie Ingenieure, mit dem anderen Naturwissenschaftler. Und sie betrachten nicht nur Fehler der Vergangenheit, sie blicken auch in die Zukunft.

Wasserstoffwirtschaft

Die angestrebte Energiewende wird es in den nächsten Jahren nötig machen, große Mengen an Überschussstrom in Wasserstoff umzuwandeln. Nur so ist Solar- und Windstrom aus dem Sommer bis in den Winter speicherbar. Doch dazu braucht es nicht nur Speichertanks, sondern auch Leitungen, Ventile, Zapfpistolen, Transportfahrzeuge und diverses Zubehör, etwa Zählwerke für die gelieferte Menge des Gases. All dies muss aus hochfesten Stählen gebaut sein, die Hunderte Atmosphären Druck aushalten und mit Dichtungen versehen sein, die Leckagen über Jahre verhindern. Doch Wasserstoff dringt in manche Stähle ein und führt schon bei normalen Umgebungstemperaturen zu einer Versprödung des Stahls. Bei Temperaturen über 300 Grad Celsius reagiert der Wasserstoff zusätzlich mit dem Kohlenstoffanteil des Stahls und verschlechtert dessen Qualität.Um das zu verhindern werden schon heute die Mechanismen der so genannten Wasserstoff-Versprödung untersucht und neue Materialien für die Energieversorgung der Zukunft entwickelt.

Spurensuche

Fatalerweise entsteht Wasserstoff nicht nur gewollt, er kann auch bei der Korrosion entstehen und in das Material eindringen. Und dort hat er, in kleinsten Mengen eingelagert, die gleiche zerstörerische Wirkung: Er macht Hightech-Legierungen spröde und bruchanfällig. Um zu verstehen, was passiert und wie dies zu verhindern ist, müssen die Forscher ganz nahe an die Mikrostruktur eines Materials heranzoomen und die chemischen Reaktionen in winzigen, von Korrosion betroffenen Bereichen untersuchen. Dafür gibt es eigens entwickelte Mikrosensoren, die Oberflächen von weniger als einem hunderttausendstel Quadratmillimeter analysieren können und dabei weniger als ein millionstel Gewichtsprozent Wasserstoff aufspüren. Mit diesen Methoden untersuchen sie kritische Zonen in Bauteilen, etwa Schweissnähte, die durch atomaren Wasserstoff spröde werden und letztlich versagen könnten.

Viel zu tun

So arbeitet etwa die Auto- und die Flugzeugindustrie immer häufiger mit Verbundwerkstoffen, die aus unterschiedlichsten Materialien zusammengesetzt sind. Über deren Korrosionsverhalten unter teilweise extremen Bedingungen ist nur wenig bekannt. Vielenorts sind auch Legierungen aus Eisen, Titan und Aluminium im Einsatz. Sie verdanken ihre Korrosionsbeständigkeit einer winzigen, nanometerdünnen Passivschicht an ihrer Oberfläche, die man nur mit speziellen Analysenmethoden überhaupt nachweisen – und erst dann optimieren – kann.

Korrosion im menschlichen Körper

Bisweilen tritt Korrosion sogar dort auf, wo man sie am wenigsten vermutet: mitten im menschlichen Körper mit seinen warmen, anscheinend harmlosen Körperflüssigkeiten. Experten untersuchen den Abbau durch lokale Korrosion an Materialien wie Edelstahl und Titanlegierungen, die häufig für Implantate verwendet werden, sowie an Silizium, das in zahlreichen neuen Implantaten enthalten ist. Auf großen, glatten Flächen geschieht dabei wenig, doch in mikroskopisch kleinen Spalten, die konstruktionsbedingt vorkommen, können menschliche Körpersäfte so einiges anrichten. Vor kurzem konnte die langsame Auflösung einer Silizium-Haftvermittlungsschicht im Labor nachgewiesen werden. Zwischen dem Implantat aus Titan und der abriebfesten Beschichtung war ein mikroskopischer Spalt entstanden. Dort kann unter Sauerstoffausschluss ganz langsam ein sehr aggressives Medium entstehen, das dann mit Hilfe der körpereigenen Phosphorverbindungen die Silizium-Haftvermittlungsschicht zerstören kann. Die Forscher sind mit speziellen Sonden in der Lage, auch die lokale Korrosionschemie in solch feinen Spalten aufzuklären und die Korrosionsvorgänge für Versuchszwecke gar zu beschleunigen. So kann schon vor der Operation die voraussichtliche Nutzungsdauer eines Implantats recht genau vorausgesagt werden.